# Reservoir Fluid Behavior, Production Trends and Analysis







- Fluids: Why? When? What? Who?
  - Reservoir Engineering 101
  - Phase Behavior basics
  - Production Trends
  - PVT, Flow Assurance, EOR apps
  - Experimental theories, Mathematics
- Blueprint for fluids program
- Value of Fluids Testing

## Why Fluids?



"During the movement of oil and gas to the surface, the temperatures and pressures to which they are subjected change significantly. As a result, their physical and chemical properties undergo many radical changes as well. The economic value of produced oil and gas is dependent upon these properties, and the operator finds it invaluable to be able to predict handling and producing techniques which will allow him to produce his reserves in a form that will provide a maximum profit."

- Kim Kardashian

## What? Why? When? Who?



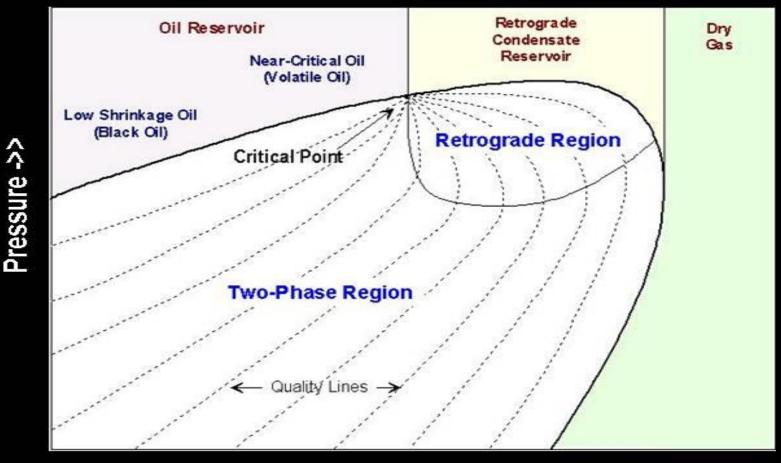
- What is PVT/EOR analysis?
  - Pressure-Volume-Temperature
  - Physical and chemical properties
- Why?
  - Phase behavior, quality, flow assurance, EOR?
- When?
  - exploration/appraisal, development, production....early and often
- Who?
  - Asset teams, reservoir engineers, facility, production engrs, flow assurance specialists, petrophysicists





# How much do I have? N = Vb \* $\phi$ \* So / $\beta$ o

# How much can I flow? Q = K \* $\Delta P$ \* A/ (L\* $\mu$ )




- What is the fluid behavior in the range of expected operating pressures and temperatures
- What is the market price of the discovered hydrocarbons and how can they be accommodated in export systems, ie, sample quality
- Does the fluid have the potential for hydrate, wax or asphaltene precipitation, ie, flow assurance
- Candidate for EOR?

## **Reservoir Fluid Behavior**



#### Phase Diagram



Temperature ->>

#### **Black Oil Reservoirs**



- Behavior
  - Heavy oil = lean gas
  - Viscosity discrepancy
  - Simple black oil models
  - Maturation = economic obstacles
- Production Trends
  - Consistent above bubble point
  - Preferential gas flow, GORs increase
  - Eventual production loss due to 'energy loss'
  - Pressure trends
- Lab/operational issues
  - Emulsions, temp control, GC errors, hi viscosity errors

#### **Summary of a Black Oil PVT Study**

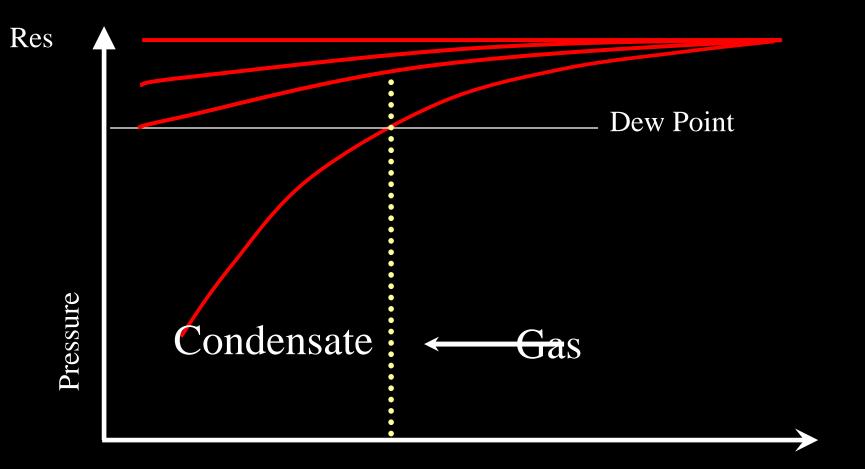


| Differential Liberation at 158 °F             |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|-----------------------------------------------|----------------------|----------------------|-----------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------|--------------------------------------|--------------|---------------------|--|
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
| Oil Properties                                |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|                                               |                      | Oil                  | Oil                         | Oil                                                      | Liberated                                          | Solution             | Oil FVF,                             | Solution     | Sep. Adj.           |  |
| Pressure                                      |                      | Density              | Compress.                   | Viscosity                                                | GOR, R <sub>I</sub>                                | GOR, R <sub>sd</sub> | B <sub>od</sub>                      | GOR, $R_s$   | FVF, B <sub>o</sub> |  |
| (psia)                                        |                      | (g/cm <sup>3</sup> ) | (V/V/psi) x 10 <sup>6</sup> | (cP)                                                     | (scf/bbl)                                          | (scf/bbl)            | (vol/resid. vol)                     | (scf/bbl)    | (vol/ST vol)        |  |
| 10.000                                        |                      | 0.790                | 5.63                        | 2.289                                                    | 0                                                  | 723                  | 1.306                                | 679          | 1.282               |  |
| 9338                                          | Reservoir            | 0.787                | 5.88                        | 2.158                                                    | 0                                                  | 723                  | 1.311                                | 679          | 1.287               |  |
| 9000                                          |                      | 0.786                | 6.02                        | 2.106                                                    | 0                                                  | 723                  | 1.314                                | 679          | 1.290               |  |
| 8000                                          |                      | 0.781                | 6.46                        | 1.944                                                    | 0                                                  | 723                  | 1.322                                | 679          | 1.298               |  |
| 7000                                          |                      | 0.775                | 6.97                        | 1.800                                                    | 0                                                  | 723                  | 1.332                                | 679          | 1.307               |  |
| 6000                                          |                      | 0.769                | 7.56                        | 1.694                                                    | 0                                                  | 723                  | 1.342                                | 679          | 1.317               |  |
| 5000                                          |                      | 0.763                | 8.26                        | 1.579                                                    | 0                                                  | 723                  | 1.353                                | 679          | 1.328               |  |
| 4120                                          | Saturation           | 0.757                | 9.28                        | 1.498                                                    | 0                                                  | 723                  | 1.364                                | 679          | 1.339               |  |
| 3250                                          |                      | 0.774                | 5.84                        | 1.797                                                    | 140                                                | 583                  | 1.303                                | 548          | 1.283               |  |
| 2400                                          |                      | 0.791                | 5.50                        | 2.227                                                    | 277                                                | 446                  | 1.249                                | 419          | 1.233               |  |
| 1500                                          |                      | 0.812                | 5.25                        | 2.936                                                    | 422                                                | 301                  | 1.191                                | 283          | 1.180               |  |
| 750                                           |                      | 0.831                | 5.04                        | 3.904                                                    | 545                                                | 178                  | 1.141                                | 168          | 1.134               |  |
| 150                                           |                      | 0.850                | 4.84                        | 5.562                                                    | 659                                                | 64                   | 1.088                                | 60           | 1.085               |  |
| 15                                            |                      | 0.866                |                             | 6.322                                                    | 723                                                | 0                    | 1.044                                | 0            | 1.044               |  |
| 15                                            | at 60 °F             | 0.899                | API = 25.7                  |                                                          |                                                    |                      | 1.000                                |              |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
| Vapor Prop                                    | ortios               |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|                                               |                      | ~ 7                  |                             |                                                          | 0 5//5                                             |                      |                                      | <u> </u>     |                     |  |
| Pressure                                      | Gas                  | Gas Z                | Incr. Gas                   | Cum. Gas                                                 | Gas FVF,                                           | Gas FVF,             | Total FVF,                           | Calc. Gas    |                     |  |
|                                               | Density              | Factor               | Gravity                     | Gravity                                                  | Bg                                                 | Bg                   | Bt                                   | Viscosity    |                     |  |
| (psia)                                        | (g/cm <sup>3</sup> ) | (vol/vol at std)     | (Air = 1.00)                | (Air = 1.00)                                             | (res bbl /mmscf)                                   | (res cu ft / scf)    | (vol/resid. vol)                     | (cP)         |                     |  |
| 3250                                          | 0.179                | 0.901                | 0.708                       | 0.708                                                    | 882                                                | 0.0050               | 1.426                                | 0.022        |                     |  |
| 2400                                          | 0.129                | 0.890                | 0.681                       | 0.695                                                    | 1179                                               | 0.0066               | 1.575                                | 0.018        |                     |  |
| 1500                                          | 0.077                | 0.906                | 0.664                       | 0.684                                                    | 1921                                               | 0.0108               | 2.001                                | 0.015        |                     |  |
| 750                                           | 0.038                | 0.933                | 0.681                       | 0.684                                                    | 3956                                               | 0.0222               | 3.294                                | 0.013        |                     |  |
| 150                                           | 0.009                | 0.985                | 0.876                       | 0.717                                                    | 20882                                              | 0.1172               | 14.851                               | 0.012        |                     |  |
| 15.025                                        | 0.002                | 1.000                | 1.607                       | 0.795                                                    | 212088                                             | 1.1908               | 154.308                              | 0.009        |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
| Notes:                                        |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
| Compre                                        | essibility is c      | alculated using th   | ne indicated and            | previous pressure                                        | □ B <sub>o</sub> = Oil Volum                       | e at P,T / Stock Tar | nk Volume at 60                      | )°F          |                     |  |
| The Sep                                       | parator Adjus        | ted GOR and FV       | F represent the d           | ifferentially                                            | □ B <sub>od</sub> = Oil Volum                      | ne at P,T / Residual | l Oil Volume at                      | 60 °F        |                     |  |
| liberate                                      | d oil produce        | ed through the su    | rface separators            | (see MSF)                                                | R <sub>s</sub> = Gas Volu                          | me at Standard Co    | nditions / Stocl                     | k Tank Volum | е                   |  |
| Sep. Ad                                       | justed Data          | using Muhamma        | d A. Al-Marhoun n           | nethod                                                   | $\square$ B <sub>t</sub> = B <sub>o</sub> + [(Tota | al Liberated Vapor,  | $R_{I}$ x $B_{a}$ x 10 <sup>-6</sup> |              |                     |  |
| Gas MW = Vapor Gravity x Molecular Weight Air |                      |                      |                             |                                                          | R <sub>I</sub> is cumulative                       |                      |                                      |              |                     |  |
| □ Standard Condition 15.025 psia at 60 °F     |                      |                      |                             |                                                          | Vapor Viscosi                                      |                      |                                      |              |                     |  |
|                                               |                      |                      |                             | Oil Viscosity measured using electro magnetic viscometer |                                                    |                      |                                      |              |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |
|                                               |                      |                      |                             |                                                          |                                                    |                      |                                      |              |                     |  |

#### Black Oils – EOR applications?



- Miscibility experiments
  - Is it miscible with injection gas?
  - At what pressure?
- Does injection gas affect physical properties?
  - Viscosity reduction
- Multi-contact studies
  - Multiple recombinations of oil-injection gas
  - What's happening in front of, in back of, the 'front'


#### **Gas-Condensate Reservoirs**



- Behavior
  - Life is great...above dew point
  - Condensation begins, gas leaner
  - Condensate banking
- Production Trends
  - Gas volume pressure driven
  - Decrease due to condensation and condensate induced reduction in perm
  - Eventual increase due to higher gas perm
- Lab issues

#### Condensate 'Banking,



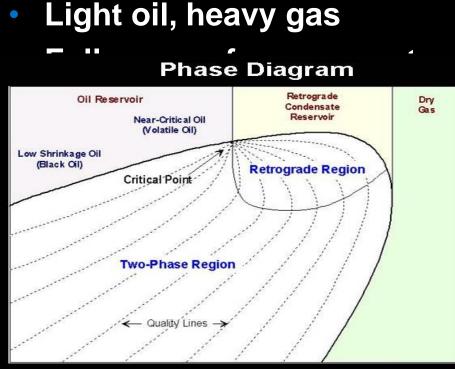


Distance from wellbore

## **Gas Depletion Study**

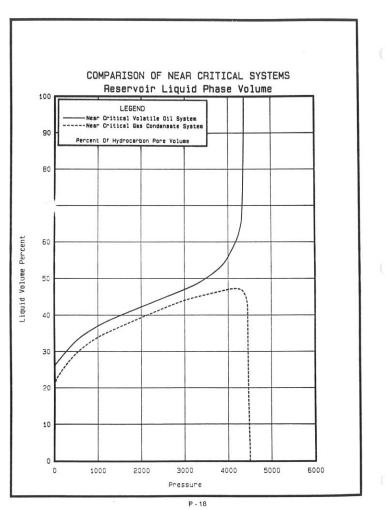


#### Calculated Surface Gas and Liquid Recovery


|                                |                   |                           |               |                 |           | Pressure (psia) |       |       |       |
|--------------------------------|-------------------|---------------------------|---------------|-----------------|-----------|-----------------|-------|-------|-------|
|                                |                   |                           | Initial       | 7232            | 6000      | 5000            | 4000  | 3000  | 2000  |
| oles in PVT Cell               |                   |                           |               | 0.769           | 0.703     | 0.633           | 0.544 | 0.436 | 0.307 |
| raction Vapor Liberated / Step |                   |                           |               | 0               | 0.066     | 0.070           | 0.090 | 0.107 | 0.130 |
| OS Predicted Liquid Fractions  |                   |                           |               |                 |           |                 |       |       |       |
| st Stage: 1015 psia, 96°F      |                   | (mole fraction)           |               | 0.061           | 0.056     | 0.048           | 0.036 | 0.024 | 0.015 |
| nd Stage: 515 psia, 72°F       |                   | (mole fraction)           |               | 0.861           | 0.858     | 0.856           | 0.854 | 0.852 | 0.851 |
| rd Stage: 105 psia, 104°F      |                   | (mole fraction)           |               | 0.829           | 0.826     | 0.825           | 0.823 | 0.823 | 0.822 |
| tock Tank, 15 psia, 60°F       |                   | (mole fraction)           |               | 0.950           | 0.949     | 0.948           | 0.948 | 0.947 | 0.946 |
| redicted Liquid Molar Volume   |                   | (cc/mole)                 |               | 184.0           | 175.9     | 167.2           | 158.4 | 150.9 | 145.3 |
| alculated Surface Recovery     |                   |                           |               |                 |           |                 |       |       |       |
| itial Reservoir Fluid in Place |                   | mscf                      | 1000          | 1000            |           |                 |       |       |       |
| apor Produced / Step           |                   | mscf                      |               | 0.0             | 86.1      | 90.4            | 116.6 | 139.4 | 168.8 |
| umulative Vapor Produced       |                   | mscf                      |               | 0.0             | 86.1      | 176.5           | 293.1 | 432.5 | 601.3 |
| redicted Surface Liquids       |                   | stb                       |               | 0.0             | 4.3       | 3.6             | 3.4   | 2.6   | 1.8   |
| umulative Surface Liquids      |                   | stb                       |               | 0.0             | 4.3       | 7.9             | 11.3  | 13.9  | 15.7  |
| redicted Surface Vapor         |                   | mscf                      |               | 0.0             | 82.8      | 87.5            | 113.8 | 137.2 | 167.2 |
| umulative Surface Gas          |                   | mscf                      |               | 0.0             | 82.8      | 170.4           | 284.1 | 421.3 | 588.5 |
| stantaneous Yield              |                   | stb/mmscf                 |               | 59.3            | 51.9      | 41.6            | 29.5  | 18.6  | 10.9  |
| verage Yield                   |                   | stb/mmscf                 |               | 59.3            | 51.9      | 46.6            | 39.7  | 32.9  | 26.6  |
| Istantaneous GCR               |                   | scf/stb                   |               | 16859           | 19282     | 24033           | 33906 | 53634 | 91744 |
| verage GCR                     |                   | scf/stb                   |               | 16859           | 19282     | 21462           | 25159 | 30417 | 37546 |
| as Recovery Factor             |                   | %                         |               | 0.0             | 8.3       | 17.0            | 28.4  | 42.1  | 58.8  |
| iquid Recovery Factor          |                   | Calculated Surface Yields |               |                 |           |                 |       |       | 27.6  |
|                                | 80 -              |                           |               |                 |           |                 |       |       |       |
|                                | _ 60 -            | Instar                    | taneous Yield |                 |           | _               |       |       |       |
|                                | Ę                 |                           | ige Yield     |                 |           |                 |       |       |       |
|                                | 음 40 <del>-</del> |                           |               |                 |           |                 |       |       |       |
|                                |                   |                           |               |                 |           |                 |       |       |       |
|                                | iel               |                           | •             |                 |           |                 |       |       |       |
|                                |                   | 1000                      | 2000 3000     | 4000            | 5000 6000 | 7000            | 8000  |       |       |
|                                | 0                 | 1000                      | 2000 0000     | Pressure (psia) |           | 1000            | 0000  |       |       |

#### **Gas-Condensates** – EOR applications?




- Gas revaporization
  - Can a lean gas revaporize the condensate bank?
  - …and maybe sweep a little?
- Gas storage?
  - Do I need facilities to handle produced liquids?

#### Temperature ->> phases, compositional grac



#### **Near-Critical Fluids: Volatile Oils, 'Rich' Gases**







- Composition: heavies, lights and mid-range
- Light liquid –heavy gas
- Large initial shrinkage and gas liberation
- Gas/liquid comps similar
  - Gas volumes increase SLIGHTLY
  - 'oil' volumes decrease SLIGHTLY
- Volatile Oils:
  - gas/oil viscosity increases, less preferential flow
  - Separator liquid = 1 part oil + 3 parts condensate

# **PVT/EOR Project Flow**



- PVT Analysis
  - Compositions, Psat, phase behavior
- MMP determination
  - Injection gas, determine miscibility
- Swelling studies
  - Equilibrium mixing, P-V, viscosity, flow assurance?
- Multi-Contact Studies
- Gas revaporization/cycling
- Core Flood/Soaking studies
- EOS-Reservoir Modeling

#### **Flow Assurance/Oil Quality**



- Quality Geochemistry
  - Source rock, thermal maturation, biodegradation, compartmentilization
- Screening Dead Oil Flow Properties
  - Pipeline specifications
- Paraffin and Asphaltenes
  - Paraffin temp control, chemicals, pipeline issue
    - Lab program: Temperature variability
  - Asphaltenes density control, reservoir issue
    - Lab program: pressure depletion onsets

## **Blueprint for Fluids Program**



- Proper sampling
- Chemistry
- Physical properties
  - fluid flow assurance, viscosity etc, dead oil analyses
- Reservoir depletion simulation
  - CME, Diff Lib, CVD
- Surface recovery simulation
  - separator tests
- Mathematics

## How is it all used?



• Reserves - Bo, Rs

oil and gas, fluid energy, recovery efficiency

How much do I have? N = Vb \*  $\phi$  \* So /  $\beta$ o

# How much can I flow? Q = K \* $\Delta P$ \* A/ (L\* $\mu$ )

- need for waterflood, gas injection
- Facility upgrades
- Allocation who gets what?
- More fluids analysis=more information=more ammunition=better models=MORE EFFICIENT USE OF ASSETS=OPTIMAL \$\$\$ SPENT=LOWER F&D COSTS







Questions?